

Home

Back to Memories

Back to Thoughts

REMOTE COMPUTING-AN EXPERIMENTAL SYSTEM

Part 2: Internal Design

J.M. Keller, E. C. Strum, and G.H. Yang

Development Laboratory, Data System.s Division

IBM Corporation

New York, N. Y.

INTRODUCTION

This is the second of two papers dealing with
the experimental remote-computing system.

Part 1 described the system as viewed by a user

who is unaware that he is jointly sharing the

central computer with numerous other users.

This paper (Part 2) describes the internal de­

sign of the system; with attention focused on
those featu res which are of general interest
and applicable to the design of other program­

ming systems.

This paper is introduced by a description of

the over-all control structure and data organi­

zation.. Each of the principal subsystems is

then described. The paper concludes with some

remarks regarding possible extended applica­

tions. An appendix describes in some detail the

algorithms used in the decomposition/recom­

position of arithmetic expressions.

OBJECTIVES

An operating system servicing numerous on­
line users must meet certain design objectives

that might be regarded as secondary or even

unnecessary in conventional operating systems

or compilers. But these objectives become para­

mount when the psychological and practical

effects of sustained, immediate access to a com­
puter are considered. Thus primary attention

must be given to attaining:

1. Immediate error diagnostics;

2. Program alteration without recompiling;

3. Extensive symbolic debugging aids;

4. Ready availability of the source version
of the user program ;

5. A user program that is:
a. dynamically relocatable,

b. easiiy interruptibie, and

c. storage protected.

SYSTEM ORGANIZATION

Program.s

The experimental remote-computing pro­

gram is divided into three major system areas

(Figure 2.1):

1. The Scheduler, which is responsible for

maintaining awareness of the total sys­

tem status and for ordering and assigning
tasks to the other system parts ;

2. The Process Control system, consisting

of the Translator, which reduces the

user's input statements to an equivalent

internal form (see below); the Inter­

preter, which executes this internal form;

and the Process Control program, which

regulates these two subsystems on the

local level ;

3. The 1/0 Control system, which is respon­

sible for monitoring and operating all

425

http://www.tmdunn.com/
http://www.tmdunn.com/memories
http://www.tmdunn.com/thoughts

r-----
1 _........,'--

I
A

PROGRAM
AREA

PROGRAM

AREA

EXCHANGE

-- FLOW @

I
I
I
I

+
I

1
I
I
I

SCAN

LINK

I
L----

1

426 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

,-
SUPERVISOR -,

I I
I >---<· --- I
I ,,--"- I
I I
I '--- I

15

MASTER

; INTERPRETER

i
l5

LIBRARY

SLePR0GRAMS

--- DATA FLOW

Figure 2.1. General Block Diagram of System.

1/0 attachments, including the communi­

cations exchange.

Data Organization

At the system level, there are three principal
data constructs:

CURRENT STATUS INFORMATION

DATA OUTPUT FORMATS

RECORD OF SYSTEM USE

CURRENT USER I.D.

-------------------- -
CURRENT ACTIVE PROGRAM

ACTIVE PROGRAM ADDRESS

CALLED SUBPROGRAM

Figure 2.2. Terminal Header.

The Terminal Header

For each terminal in the system, there is a
Terminal Header record (Figure 2.2) contain­
ing the following information:

1. Current status:

a. operating mode, i.e., Command or
Program (Rf. Part 1),

b. terminal status, i.e., I/0 wait, busy,
or dormant,

c. control information, i.e., should the

system interrupt automatic status
(execution) and return to manual

status (statement entry) or continue

automatic status,

d. type of terminal component active,

e. terminal ID,

f. storage allocation block;

2. Header information for Command mode
execution:

a. formats for data output,

b. system use records ;

3. Temporary locations for random storage
access:

a. current user identification,

b. name of current active program,

c. location of active program for this
terminal,

d. name or location of subprogram called
by current program.

The Master Block

For each statement in the language (Rf. Part
1), there is a Master Block record (Figure 2.3)
containing the following information :

1. A statement type identifier;

2. A statement class identifier;

3. The symbolic, external statement identi­
fier with associated control characters for

recognizing the statement name on input
and for recreating it on output;

4. Various indicators which denote intrinsic
statement characteristics for checking
purposes;

5. Addresses for transfers of control to the
various major system routines, e.g.,
Translator, Inter preter etc.

REMOTE COMPUTING-AN EXPERIMENTAL SYSTEM 427

INDICATORS I Cw,Os DE

STATEMENT CODE

CONTROL

CHARACTERS

AND

SYMBOLIC

 STATEMENT

IDENTIFIER

I

SCAN
ADDRESS

LIST
ADDRESS

I

LINK
ADDRESS

I

INTERPRETER
ADDRESS

I

PROCESS CONTROL
ADDRESS

I

PROCESS CONTROL

ADDRESS

PROCESS CONTROL
ADDRESS

Figure 2.3. Master Block Record.

The Master Block is used either as a diction­

ary, when information concerning the state­

ment is needed, or as a switching center, when

control flow within the system is dependent

upon the statement type. A single record for

both of these activities provides considerable

flexibility in adding new statements, in modify­

ing control conditions, and in making basic
system modifications.

The User Program Layout

For the entire system there are two large,

fixed areas (Figure 2.4) reserved for occupa­

tion of the various active user programs, Pro­

grams brought into these areas are relocated

under program control; all I/0 to and from

these areas is overlapped. The duration of oc­

cupancy is determined either by overstepping

a time limit or by the occurrence of one of

several specific conditions (see following sec­

tion on user-program organization).

The layout of the user program is divided

into two parts :

1. The statement and element records (see

following section) which comprise the

user program ; and

2. The header.

PROCESS CONTROL INFORMATION

ELEMENT CONTROL TABLE

STATEMENT CONTROL TABLE

R-INDEX TABLE

N-INDEX TABLE

PARAMETER STACK

TEMP STACK

PROGRAM LIST

(STATEMENT AND ELEMENT LISTS)

Figure 2.4. User-Program Layout.

The header is further subdivided into two

parts:

1. List control and other controls for the

program records (see fo!!owing section) ;

and

2. Control words used by the Process Con­

trol program to keep track of program

status.

USER-PROGRAM ORGANIZATION

The User Program

The user's source-pTogram statements are

mapped into equivalent internal records, which

are classified and controlled by list structures.

These records and their controlling elements

constitute the user's program (see Figure 2.4).

Every statement of the user's program is re­

duced to an individual statement record; and

every element (name or label) is reduced to an

individual element record. These records are

inserted and chained on lists in the program

area in the order of their appearance and crea­

tion. Control is maintained through tables of list-

control words in the header portion of the user

program. All addresses in the user pro­ gram are

relative to its base in order to facili­ tate

relocation.

428 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

Records

Element Records

An element in the source program is defined

as a label, constant, variable, array, or func­

tion name. Every source element maps into a

fixed-length, internal element record (see Fig­

ure 2.5) containing the following information:

REFERENCE

NUMBER TYPE I MODE

SIZE

NEXT ADDRESS

INDICATORS

ARRAY/COMMON/EQUIVALENCE
ADDRESS

NAME

VALUE

Figure 2.5. Element Record.

1. Reference number-a unique internal nu­

meric identifier, assigned by the system. It
is used for all internal referencing by the

system.

2. Type-denotes the type of element, i.e.,
label, constant, variable, array, function.

3. Mode-denotes the mode, real or integer,

of elements referring to numeric quanti­

ties.

4. Indicators-contains properties attributed

to the element by declarative statements

and/or execution. These include storage­
allocation, and indications of element usage

at object time.

5. Name-the external alphanumeric identi­
fier.

6. Value-either the numeric value of the
element or supplemental information for
an array or function.

7. Next address-address of the next element
record.

8. Array COMMON EQUIVALENCE­
address of the value, if the element is in

COMMON or is an array; or an offset ad­

dress, if the element is equated to an array.

Statement Records

Every source statement maps into a variable­
length, internal statement record (see Figure

2.6), which contains in coded form all informa-

C = A.*B + C/SQRT(D)

Figure 2.6. Statement Record.

tion present in the source statement. Each

record begins with two standard words con­

taining the foHowing information :

1. Alter number-a unique internal numeric

identifier assigned by the system. It de­

notes the position of the statement relative

to all others in the program; it is refer­
enced by the user when modifying the pro­

gram, manually requesting information, or

starting execution.

2. Statement code-identifier of the partic­
ular statement type.

3. Indicators-reflects usage of the state­
ment during execution.

4. Label-refers to the associated external
statement number, if any.

5. Next address-address of the next state­
ment record.

6. Next class address-address of the next
statement record of the same type.

The remainder of each statement record con­

tains one or more words. Their number and
content depend on the particular statement

type. For example, an arithmetic-statement

record contains the macro representation of

ALTER NUMBER

SIZE

NEXT ADDRESS

STATEMENT

CODE

INDICATORS

LABEL

NEXT CLASS ADDRESS

R(C)

*

R(A)

R(B)

PARAMETER

OPERATOR

R(D)

FUNCTION
OPERATOR

R(SQRD

I

R(C)

temp

+ -

temp

temp

R(C)

temp

REMOTE COMPUTING-AN EXPERIMENTAL SYSTEM 429

the translated expression, while a DO state­

ment contains references to the indexing param­

eters.

Lists

The objective of providing for alteration of

individual statements was the deciding factor

in determining the internal record organiza­

tion. The conventional table-oriented approach

appeared much less attractive than the classi­

records in source sequence (i.e., ordered

by "alter number");

2. One of the class lists, consisting of all

statements of a particular class (e.g.,

arithmetic, control, DO, I/0, allocation

declarations, etc.).

The entry list is used both to control execu­

tion sequence and to provide the proper order­

ing when the source program is reconstructed

from the internal form.
fication of records by lists. ,1 2• , 3 4•, 5 6

The class lists are extremely useful in per­
Most compilers use tables to record infor­

mation necessary for referencing and validating

data usage and control flow. In this system, the

same information is kept in the statement and

element records. However, organizing these

records on lists allows for increased flexibility in

the compiling system.7
•

8
•

9
•

1° For example,

deletion and insertion of statements for pro­

gram modification is easily provided. Time-con­

suming recompilations become completely un­

necessary as a result of this altering provision.

In addition, errors resulting from improper

control flow and from invalid variable refer­

ences can be diagnosed earlier in the compila­

tion p1·ocess than is common with conventional

compilers.

Element Lists

Each element record is chained onto one of

26 element lists, each list consisting of all

those element records whose symbolic names

have the same initial letter. Element records

within each list are ordered alphabetically by

symbolic name. There are two additional list3

which link numeric elements as either integer

or real constants. This set of element lists pro­

vides two significant features :

1. The symbol look-up is more efficient since

only the set of symbols with the same

initial letter are considered ;

2. Fully alphabetized symbolic cross-refer­

ence listings and memory dumps are easily

provided.

Statement Lists

Each statement record is chained onto two

lists:

1. The entry list consisting of all statement

forming checking operations (e.g., checking DO
loops for proper nesting and control transfers).

List Control

Every list is controlled by a single cont.col

word pointing to the first and last records. For

the statement lists there is a small table of

control words for statement control (see Figure

2.4). Another similar table controls the element

lists. In addition there is also a master table

controlling the symbolic names of reserved

system symbols: library functions (e.g., SIN,

SORT, etc.); built-in functions (ABS, FLOAT,

etc.); and system subroutines (DUMP, EXIT,

etc.).

Addressing

Two tables exist for control of the element

and label identifiers (see Figure 2.4). These are

the R-index, or internal-identifier reference

table, and the N-index, or numeric-label table.

For every element that appears in a program,

an entry for its internal identifier, R, is made

in the R-index table; similarly, for every state­

ment label, N, an entry is made in the N-index

table.

Every element or statement in the program

can be accessed in an "asociative" manner by

sequentially searching the lists until a match

is found for the requested symbolic name or

alter number. Each element or labeled state­

ment can also be located in a "direct-look-at"

ma nner 11 by using the internal identifier for the

element or label as an entry to the R- or N­

index table. Thus the flexibility of associative

list searching and the efficiency of direct ele­

ment fetching are both incorporated in the

system.

TRANSLATOR
SYSTEM

STATEMENTS
INTERPR!TEII

SCAN
ROUTINES

UM<
ROUTINES

MASTER
81..0CK

ROUTINES

430 PROOEE'DINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

FUNCTIONAL DESCRIPTION

The Scheduler

The purpose of any real-time, multiprogram­

ming supervisory program is to synchronize,

control, and monitor system operation.12•
13

•
14

The program is responsible for determining

what things are to be done, and by whom, to

what, where, and when each is to be done. It

has the duty of maximizing system through­
put and ensuring reliable operation, and, in this

case, of maintaining rapid and level response

times at the terminal consoles.

At the nucleus of this supervisory structure

(see Fig.ure 2.1) is the Scheduler, 15 , 16 which con­

trols the:

1. Process Control program, which in turn

directs the processor routines that trans­

late and execute user programs; and

2. I/O Control program, which coordinates
the communications exchange, random

storage devices, tape units, reader, and on­
line printer.

The Scheduler performs continual sequential
sampling of the subsidiary subsystems and
maintains pertinent status data in the termi­

nal headers. When data has been received from
the terminal, the Scheduler examines the
terminal header and decides whether to trans­

mit a request to the random-storage I/O queue
to fetch the user program (Program mode), or,

if no program is required, save the data in a to-
be-processed queue (Command mode).

In either event, the Scheduler passes to the
Process Control program all information neces­
sary for processing the input message--such as

locations of the terminal and program headers,
the location of the input message, and the op­
erating mode of the terminal.

Even if no message has been received for a
given terminal, its active program will be

fetched from random storage and the Process
Control program entered, if the terminal header
shows that the program is in the automatic

state (i.e., in the process of execution). After
each return from the Process Control program

under this condition, the Scheduler must deter­
mine whether the automatic state should be
terminated.

There are two kinds of termination : tempo­
rary, and return-to-manual. Temporary inter­

ruption frees the system for use by another

terminal and may occur for the following

reasons:

1. The allotted time interval has expired ;

2. Input data is requested:

3. Output buff er is filled ;

4. An external subprogram is invoked.

The return to manual status occurs when:

1. .An error condition occurs;

2. A STOP or PAUSE statement is executed;

3. The end of the program is encountered ;

4. The user requests an interrupt from the
terminal.

The Process Control Program

The Process Control program (see Figure

2.7a) accepts information from the Scheduler

and coordinates the activities of the processor

programs. All of the appropriate Process Con­
trol routines and service routines must be ini­

tialized (1) to process the terminal header if

the termnial is in the Command mode, or (2) to

process various parts of the program header

and list if in the Program mode. The Process

Control program maintains an action code in

Figure 2.7a. General Diagram of Process Control Flow

REMOTE COMPUTING-AN EXPERIMENTAL SYSTEM 431

each header to determine the next task to be
performed upon the user program. The

Process Control program may require the

input statement just received to be scanned by

the translator; it may require continuation of

execution, of a DUMP, or of a LIST. The user

program may be in the ALTER mode; it may

be in the process of being tested for certain

conditions which may prohibit further execu­
tion. Data for an input statement may be

awaited or output of multiple-error messages

may be in effect.

When the user program is in the manual

mode, the Process Control program has the

responsibility of examining the process codes

returned from the translator and of taking the

necessary action. When the user program is

in the automatic mode, execution may be

temporarily halted and, in some cases, the pro­

gram may be returned to manual-mode status

(see above). When a subprogram "call" is

made, execution halts until the next cycle for

this terminal. At that time, the called subpro­

gram becomes the user's active program and is

brought into memory in place of the calling pro­

gram. When a RETURN is effected or if an

error occurs, the calling program is reactivated.

Figure 2.7b. General Diagram of Process Control Flow

-Translator.

In order that the user may always be aware

of the status of his program, condition codes are

printed at the terminal whenever a change of

status occurs. He is notified when input (a

statement or data) is requested; when an error

occurs; when and why execution was termi­

nated; when a system statement (see Figure

2.7d) occurs (e.g., DUMP, INDEX, TRACE);

and, optionally, when a subprogram call is
made. When execution runs off the end of a

program, and when a STOP or PAUSE is en­

countered, he is informed that his request for

interruption of execution has been recognized.

In short, the Process Control system always

knows what is happening in the user pro­

gram, and continually keeps the user informed

of the status of his job. The objective is to
provide the remote user with a more complete

awareness of his program's status than is

obtainable at a conventional computer console.

The Translator

Scan Routines

The Translator (see Figure 2.7b) is responsi­

ble for transforming the source-language pro­

gram to the internal form.17 • 18 •
19 (See Figures

2.5 and 2.6.) A preliminary scan is first used
to identify arithmetic statements. For all

other statements, the statement operator is col­

lected and used to reference (via a Master Block

routine) the corresponding master record. Con­

trol then passes to the translation routine for

the particular statement type, e.g., GOTO, RE­
TURN, PRINT, DIMENSION, etc.,

Every statement's decomposition goes

through the same basic phases to form element

and statement records. These involve the use

of several service routines to collect the element

name, find its record in a list or create a new

record, and validate the statement and element

usage.

As each element in a statement is collected,

a search is made to determine if it has pre­

viously appeared in the program. If the ele­

ment has been previously used in the same

statement, the record appears on a current ele­

ment working list; otherwise, it may be found

on the element list in the user's program or,

alternately, on the master list of reserved and

432 PROCE.EDINGS---SPRING JOINT COMPUTER CONFERENCE, 1964

system names. If no record is found, then the
element is new to the program, and a record is

created for it and placed on the current work­

ing list. The information put into the record
depends on the variable itself and the kind of

statement it appears in. The mode indicators

for an element depend either on its initial

letter or on its appearance in an INTEGER

or REAL declarative statement. The type and

variable indicators depend on the statement

type. A variable appearing in a storage-alloca­

tion statement is nagged according to its dec­
laration as an array, common, or equated vari­

able.

If all source elements have previously ap­

peared, no new element records result from

the translation of a statement. However, a

statement record must always be created. The

Master Block record for the statement type

provides the statement code. Statements that in­
volve a list of variable, such as DIMENSION,

EQUIVALENCE, or COMMON, contain a

count of the variables used followed by the R­

number of the variables.

Statements which involve a list of labels, such
as:

GO TO (5, 6, 7, 8), I or IF (J-5) 12, 3, 12

contain an item count followed by the numeric
labels. If the execution of a statement will

change the value of a variable, the identifier of
that variable is placed in a special field in the

statement (see Figure 2.6).

Statements containing arithmetic expres­

sions or input/output lists involve specialized

decomposition routines. The master Trans­

lator passes to both these routines essentially

the same input: a string of words, each word

containing either an operator or an R-number.

The decomposition routine transforms these

elements into an ordered set of arithmetic

macros consisting of an operator and two op­

erands in every word. These macros are then

returned to the master Translator and added

to the statement record (see Figure 2.6). The

input/output list-decomposition routine also

returns a macro set of executable operations,

(A detailed description of the arithmetic de­

composition is contained in Appendix I.)

Scan Diagnostics

Throughout the translation-scan phase,

checking occurs for syntax and composition­

type errors. Illegal statement operators and

invalid statement forms are detected early in
the translation. Lack of a label on a FORMAT

statement or the presence of a label on a de­

clarative (where control may not flow) violate

the definition of the statement type. Illegal

uses of variables, such . as a simple variable

name followed by a parenthesis, are detected

by testing indicator bits in the element records.

The same checking of element records is used
to detect mixed-mode errors in the arithmetic

expressions. The number of subscripts fol­

lowing an array name is checked for agree­

ment with the number declared in the DIMEN­

SION statement for that variable. In general,

the Translator detects all syntactic errors

which are within the context of a single state­

ment and those semantic errors which occur in
the use of the elements in the statement.

Link Routines

If the statement has no errors, the Process

Control program decides whether to save the

statement record and its related element records

as part of the user'i program. A statement

record is either added to the end of the entry

and class lists or, if the .ALTER mode is active,

is inserted somewhere into these lists. To ac­

complish this linking, space for the new record
is found, and the address of this area, relative

to the program area base, is inserted as the

"next" address in the preceding record on the

list.

If the statement record is successfully put
into the program area, the element records are
linked to their respective lists. Every new ele­

ment record also causes its address (relative to
the user program base) to be entered into the R-

index table.

Link Diagnostics

Before a new record is actually chained to a
list, certain checks for consistency of referenc­

ing are made. These are partially accomplished
through use of the N-index table, in which all
references to labels are recorded. For every

label in the program there is a corresponding

• • • •

REMOTE COMPUTING-AN EXPERIMENTAL SYSTEM 433

entry in this table. In each entry there are

two fields : the first specifies the relative address
of the labeled statement record ; the second

specifies how the label is referenced, i.e., from

an 1/0 statement, a DO statement, or a branch

type statement. These entries are set up and
checked before the statement is linked to the

lists.

Examples of., the errors detected at this

phase are:

1. Duplication of statement numbers;

2. Referring to a FORMAT statement from

a branch statement;

3. Ref erring to an executable statement from

an 1/0 statement;

4. Using an illegal statement as the end of a
DO (e.g., a branch type) ;

5. Referring, as the end of a DO, to a state­

ment which precedes the DO.

Another type of consistency error detected

at this time is based on ordering of statements.

To link a statement into a list, the preceding

statement must be available. In the case of an

ALTER insertion, the succeeding statement

is also available. It is possible, then, to check

for violation of such precedence rules as:

1. Declarative statements must precede ex­

ecutable ones;

2. The first executable statement following a
branch-type statement must be numbered

(i.e., every section of the program should
be potentially executable).

It is important to note that all these consist­

ency and precedence errors are reported to

the user immediately after the statement is

accepted by the system. Most conventional com­

pilers report all composition-type errors

throughout the entire program before going

on to check for consistency errors. In this sys­

tem, diagnostics are provided as early as pos­

sible.

When the END statement is first linked to

the program list, or thereafter at the end of an

ALTER sequence, several specialized routines

check completeness of control flow and data

referencing.

Storage Assignment

The value of a simple variable or a constant

is stored in the element record. However, stor­

age for all arrays and any variable appearing in

common must be specially assigned. Because

of their interaction, all allocation declarations

must be entered before storage can be assigned ;

on the other hand, storage must be assigned as
soon as possible since partial execution of the

program may be requested at any time. The

Link routine, on recognizing the first executable

statement, assigns storage on the basis of all

declarative statements, which are linked on the

same class list. After an ALTER sequence in­

volving a storage allocation the same operation

is .again performed.

Storage Control

When a statement or element record is to be

linked to a list, it is moved from a temporary

working area to the program area. Space for

successive records or data storage is at first

assigned sequentially throughout the program

area.

When the user deletes (via ALTER) any

statement or variable from the program, the

associated records are unlinked from the pro-

gram and chained to a "null" list ordered by

size of record. When space is needed for a new

record, the null record that best fits (i.e., large

enough but with minimal "trim") is selected;

this technique prevents wasteful fragmentation

of the null-storage areas.

If no record on the null list satisfies the space

requirement, but the total size of the scattered

null records would provide enough space, then
a "squeeze" is performed by moving every

record in the program to a contiguous storage

area. All references to relative addresses in the

program area are then changed to reflect this

relocation.

The Interpreter

Execution of the user's program is done in

an interpretive fashion20 21 22 23 24 on a state­

ment-by-statement basis under control of the

Process Control program. This control pro­
gram sends to the Interpreter the address of

the statement to be executed. Upon successful

434 PROCEE-DINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

SYSTEM STATEMENTS

GET:

ADDRESS

VALUE

RECORD

R NO.

STA

CHECK:

N

ROUTINES

Figure 2.7c. General Diagram of Process Control Flow

-Interpreter.

DO

 MASTER
BLOCK

ROUTINES

execution of this statement, the relative address

of the next statement is saved in the program
header. At this time, an indicator is turned on

in the statement record, showing that the

statement has been executed.

The Interpreter can be broken into several
parts (see Figure 2.7c) :

1. The master interpreter, which decodes the
statement type;

2. The service subroutines used by all state­
ment routines;

3. The macro interpreter used for arithmetic
expressions ;

4. The various statement routines.

Decoder

To interpret a statement, a code is fetched
from the statement record and, using the Mas­
ter Block, control is transferred to the appro­

priate Interpreter routine.

Service Routines

These subroutines are used to fetch element

and statement records and to address value

words for variables and constants. In the In-

Figure 2.7d. General Diagram of Process Control Flow

-System Statements.

terpreter, all fetching is done by a direct "look­

at" of a table entry for an address. This is in

contrast to the associative referencing used in

the Translator. Execution speed is consider­

ably increased by this elimination of list search­

ing.

All references to a variable in a statement

record are by its internal identifier. This num­

ber is used as a key to the R-index table to

access the relative address of the element rec­
ord. Whenever a value word is fetched for

use, an indicator for "variable used" is turned

on in the element record. Similarly, if a value

is stored into a value word, an indicator for

"variable set" is turned on.

Macro Interpreter

The evaluation of an arithmetic expression

can be expressed in hardware terms; i.e., the
system has an instruction repertoire of six two-
address instructions, and is equipped with a

group of pushdown regist ers. 2, 5 2,6 2, 7 2,8 2a Execution
of the statement in the interpretive

INTERPRETER

MASTER

BLOCK

TRACE

TRAP
SNAP

START
STEP

INDEX
CHECK
AUDIT

DUMP

NUMBER
LIST

RESET

COMMAND
EDIT

EXIT

GET:

ADDRESS

VALUE

RECORD

R NO.

STATEM.

CHECK:

N

DO

REMOTE COMPUTING-AN EXPERIMENTAL SYSTEM 435

mode is analogous to machine execution and
involves several steps:

1. Fetch the next niacro (i.e., instruction) to
be executed;

2. Fetch operand values;

3. Decode the instruction operation ;

4. Perform the specified operation;

5. Store the result in a push-down stack.

Subscripts of arrays and arguments of f unc­
tions are indicated by a special operator. When
this operation is encountered, an entry is made
in a push-down parameter stack. Values are
fetched from this stack for computing an array
address or for passing arguments to a function.

Functions are also indicated by a special op­
erator. When this operator is encountered, the
function-element record is fetched. All records
for librar'y routines point to their actual ma­
chine coding within the system. All other func­
tions are called from random storage.

Statement Routines

Every statement has a particular Interpreter
routine associated with it. There are several
categories which should be discussed:

1. Arithmetic-the macro interpreter is used
to evaluate the expression to the right of

the "==" and store its value in the left...
hand variable.

2. Branch-the macro interpreter is used to
evaluate the arithmetic expression for an
IF ; a service routine is used to fetch the
value for I in GO TO (. •..), I. The proper
transfer point is chosen from the list of
numeric labels in the statement. This
numeric label is used to access the N-index
table for the relative address of the state­
ment to which control should flow.

3. DO loops-the initial execution of a DO
statement creates an entry in a push-down
stack controlling DO nesting; it also initial­
izes the value of the DO index variable
and flags its element record as an active
DO index. The execution of the last state­
ment in the range of a DO is detected
through checking of an indicator turned
on in the translation process. After execu­
tion of this last statement, the DO state-

ment is fetched again and its index is
tested and incremented. Execution con­
tinues with the statement following the
DO until the indexing condition is satisfied.

4. Input/Output-an 1/0 macro interpreter
is used to compute addresses of values to
be passed to the appropriate input/output
service routine. A table is generated in
the execution process to handle variables
in the list controlled by implied DO's.

Execution Diagnostics

Choosing the interpretive approach to ex­
ecution necessarily means sacrificing speed.
For debugging purposes, this is not often a
serious impediment-especially since diagnos­
tics are possible for many errors never detected
in conventional execution. These include de­
tecting:

1. A value word not being set before used :

2. A subscript value not being valid;

3. A DO index being reset in the range of
the DO;

4. A computed GO TO parameter not being in
range;

5. The size of an integer exceeding its limits;

6. The existence of an illegal value in an I/0
list with implied DO's.

Input-Output Control System (JOGS)

The prime responsibility of the Input-Output
Control system is to select, from the respective
queues built up by the Scheduler, the next task
or combination of tasks to be performed by the
individual 1/0 units. Upon completion of a
given task, the Scheduler is notified either di­
rectly through program switch indications or
indirectly through the terminal header. Before
relinquishing control to the Scheduler, the
IOCS initiates the next task for that channel
device based on the queue information. It also
maintains control surveillance over all 1/0
buffer areas to prevent overflow.

The 1/0 attachments consist of disk, drum,
magnetic tape, ca.rd reader, on-line printer and
communications exchange.

The disk is used as a permanent storage for
user programs. The drum serves as a rapid

436 PROCEEDINGS_;SPRING JOINT COMPUTER CONFERENCE, 1964

access storage device for the repeated shuffling
of user programs in and out of memory. The
magnetic tapes, card reader, and printer are

used in a conventional manner.

The communications exchange has some in­
teresting capabilities not found in more con­

ventional 1/0 equipment.

The Exchange

The IBM 7740 communications control sys­
tem30,31 is used to buffer and control the traffic

flow between the communications network and
the IBM 7040 computer.

It is a stored-program computer with a

rather specialized instruction repertoire de­

signed for real-time applications. The instruc­
tions possess powerful logic and data manip­

ulating facilities, through somewhat limited

arithmetic capability. Instructions are fixed in

size, one instruction per 32-bit word, while data

is composed of strings of 8-bit characters. Ad­

dressing is at the character level, up to a maxi­

mum of 64K characters (i.e., 16K words).

The 7740 program performs several com­
munications-oriented functions. First, it ac­

complishes line and terminal control by gen­

eration, recognition, and manipulation of con­

trol characters, in order to establish a connec­

tion to the remote terminals, and to determine

the operation to be performed. Second, it pro­
vides message control, so that· the messages

may reach their intended destinations: they are

logged in, monitored for correctness, and con­

verted from the various transmission codes to

the codes acceptable to the other devices in use.

Third, it provides protection to ensure the

proper disposition of messages, and to ensure

the correction of transmission errors wherever
possible.

To simplify these functions, the 7740 has

several hardware and programming capabilities

not often found in conventional computers.

1. The most striking of these is the ability
to operate in an independently controlled

hierarchy of modes. In increasing order

of priority (that is, decreasing order of in­

terruptability), these are:

a. The normal mode. The normal activ­
ities involved in polling, addressing,

and monitoring of all communications
devices are conducted in this mode.

Because of the large number of lines,
processing is on a continuous service
basis, whereas a conventional computer

attains 1/0 overlap by yielding inde­

pendent control to the devices and
servicing them on an interrupt basis.

b. The 1/0 mode. This mode is used to

control input/output between the 7740

and the 7040. A special uninterruptable

state, called copy mode, is used for the
actual transmission of information.

c. The attention mode. This mode is en­
tered when service (not connected with

any hardware malfunction) is needed
(e.g., servicing the interval timer).

d. The service mode. This mode is en­
tered if malfunctions are detected.

Entry to the service, attention, or 1/0
copy modes may be initiated by the ma­

chine; entry to any mode may also be initi­

ated by the program. In addition, it is

possible to inhibit mode change so that

tables or programs used in several modes

may be protected (this is analogous to dis­
abling a channel on a conventional com­

puter).

Associated with each mode is a pair

of machine registers which contain the

complete status information. Mode change

is automatically accomplished by storing

this information into the cells associated

with the old mode and picking up the cor­

responding information from the cells as­

sociated with the new mode.

2. Time-stamping, essential to control in any

communications or real-time environment,

is provided for by the interval timer, which

is automatically updated by the machine
every few milliseconds. This timer is used

in conjunction with attention-mode pro­

grams to provide a programmed real-time

clock, and a programmer-accessible in­

terval timer.

3. Information about each of the communica­
tion channels (or lines) is maintained in
fixed positions of core storage using two
channel-control words, one pair for each

line involved. The current status informa-

REMOTE COMPUTING-AN EXPERIMENTAL SYSTEM 437

tion of these words is manipulated by both

the hardware and the programs in order

to control the flow of information within

the system.

4. In order to facilitate the acquisition and

transmission of data, the memory of the

7740 is considered by the hardware to be
divided into blocks of 32 characters, each

of which begins on an 8-word boundary.

The first 30 characters of each block are

used to store data, while the last two pro­

vide a 16-bit chaining address used to in­

dicate where the next block of information

is located. These chain addresses, supplied

by programming, are used by the hard­ wa-
re to advance automatically to the next

character location.

Because storage is not infinite, it is pos­

sible to place a special indicator in the

chain-address location of any block. When

this buff er-block signal is detected by the
machine in the process of acquiring a new

block, automatic entry into the attention

mode occurs, thus enabling the program

to accurately control the available storage

pool.

CONr.T ,TTnTN REMARKS

The Translator described performs a map­
ping of a source program to an equivalent, list-

- structured, internal form. This method may

be called "selective" or "differential" compil­

ing, because statements may be inserted, re­

placed, and deleted without retranslating the

entire source program. In addition, this ap­

proach provides rapid, comprehensive refer­
ence and diagnostic data. And finally, the

process is reversible ; the source program may

be regenerated in its original form, or in a

related for m.32

Interpretive execution provides the means
for complete source-language debugging. In­
formation on the dynamic behavior of data use

and control flow can be applied to improve opti­
mization of the generated object code.·

The implementation and description of the

rem9te-computing system has naturally been

done in a time-sharing context. Nevertheless,

the techniques used are equally applicable to a

conventional compiler operating under a moni­

tor system.

Standard hardware devices in a conventional

configuration were adapted to this purpose
through programming. However, system per­

formance could be substantially improved by
use of a special machine organization designed
to perform the same functions.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the con­
tribution of two associates: Miss Harriett
Cohen for the stQrage allocation routines, and

Mr. Dan Davis for the l/0 list decomposition

and interpreter routines.

APPENDIX I-EXPRESSION DECOMPOSI­

TION /RECOMPOSITION

Introduction

The primary purpose of any formula trans­

lator is to reduce expressions to a form that

provides the fundamental order in which op­

erations should be performed to produce cor­

rect results. Implicit in this form should be
a record of the order in which partial results

are deveioped, accumulated, and reused.

The techniques and traditional program­
ming tools generally applied to accomplish this
are ;33, 34, 35, 36

1. Forward scan ;

2. Push-down list;

3. Forcing tables ;

4. Ordered macro list ;

5. Implied push-down temporary indica­

tions;

6. Chaining and string concatenation.

Forcing tables are used to produce an order of

operation based on the real or assumed
hierarchy of arithmetical or mathematical op­

erators. Push-down lists in this respect often

work on a LIFO (last in-first out) principle.

Macros are used as a form which approaches

as nearly to a machine-executable form as can

be used while retaining its machine-independ­

ent structure. In addition to the operator and

the operand elements, the macro form often

438 PROCEEDINGS_:SPRING JOINT COMPUTER CONFERENCE, 1964

contains a reference to the temporary result

that the operation will produce, such as Tl or

T2, implying a push-down order to partial re­

sults. String-manipulation techniques of chain­

ing and concatenation are often employed to

facilitate translating operations.

Requirements

The Arithmetic Translator includes not only
the traditional decomposition but also a re­

composition37 phase to restore the statement or
expression to its original form from the com­

pressed macro string generated during decom­
position. The macro string generated, there­
fore, must satisfy several requirements:

1. It must be easily interpreted, saving time;

2. It must be compact, saving space;

3. It must be recomposable.

The decomposition translator must detect
all errors in logic and syntax. It must supply
the number, order, and mode of all operations

to be performed by the Interpreter.

The recomposition translator should develop
a string in the original sequence; all necessary

punctuation must be restored. In short, it

must produce a string identical in all respects

to the original, except for the removal of re­

dundant parentheses. The resulting string,

when decomposed again, should produce a

macro string identical to that originally de­

composed.

OPERATOR DECOMPOSITION RECOMPOSITION

Symbol Nome Left Op Right Op Old Op New Op

+ plus 5 5 2 l

 minus 5 5

 multiply 4 4 3

I divide 4 4 3

 exponentiation 4 3 3

so subscript 6 0

fo function 6 0 7

 replacement 7 0 7

um vnory minus 5

 comma 6 5 0

 left poronthesis 6 0 0 0

 right poronthesis 0 6 0 0

0 end of message 0 7 0

(EOM)

Note: The zero code signifies that the operator is illegal when appearing in the

specified role.

Figure 2.8. Forcing Tables for Translator.

Techniques

Forcing Tables

The forcing tables in Figure 2.8 are used as

follows. The decomposition table is used to

cause the• generation of macros based on the

relative hierarchy of related or successive op­

erators. If the value for the right operator is

equal to or greater than the value for the left

operator, then a macro based on the left opera­

tor is generated.

The recomposition table is used to decide

when parentheses are necessary to maintain the

hierarchy implicit in the order of macros pre­

viously generated. If the value for the new op­

erRtor is greater than or equal to the value for

the old operator, then the string developed

around the old operator during a previous con­

catenation must be enclosed within parentheses

before further concatenation can take place.

Push-Down Lists

The lists used in the decomposition trans­

lator are the operator and variable lists which

hold those elements awaiting further action

from a forcing situation. The recomposition

translator has an operator list used essentially
for the same purpose. In addition, it uses two

lists which contain control words of partial

strings awaiting further action. The "work

list" contains the control words of strings which

are to be concatenated into a single string with

a single control word. This control word is

then placed on the "string list" until a later

call for further concatenation is encountered.

M aero Strings

Each macro contains an operator byte and

one or two variable bytes. The operator is a

basic operation plus an indication of the modes

of the variable bytes. Either or both variable

bytes may contain a temporary indication.

These do not have to be specific temporary in­

dications, since owing to the ordered structure
of the macros, both the Interpreter and the re­

composition translator use a push-down ac­

cumulator for storing and fetching partial re..:

sults of execution and partial strings developed

through concatenation. For the same reason,

no indication need be kept in the macro of the

REMOTE COMPUTING-AN EXPERIMENTAL SYSTEM 439

temporary to be generated by the operator

(such as Tl or T2). To save space, macros with

temporary indications may be compressed dur­

ing packing procedures by indicating left and/

i
X = ((-B) + SQRTF(B**2-4. *A*C))/(2.*A) 0

or right temporaries in the operator byte, thus

eliminating all bytes for temporary indications.

For example, when the macro string generated

in the example is compressed in this manner, it

re3ults in 22 bytes, or, at four eight-bit bytes

per word, less than six words of storage. The
ln terpreter accesses macros-in order-for ex­

ecution of the statement, building up temporary

re3ults and using them in turn when later

MACRO OUTPUT STRING

.ill. .Yl_ V2

um

PUSH DOWN LISTS

..Q.E. Var

X

%

,,f' temp

yrn" SQRTF

+

fo

macros call for them. An EOM (End of Mes­

sa_ge) operator signals the end of the macro

list. The recomposition translator accesses the

macros and builds up temporary strings in

much the same manner as the Interpreter. Also

from this simplified, compact macro form it is

but a simple step to generate machine-language

code; either temporary locations can be im­

plicitly addressed by the machine itself or else

explicit storage addresses can be used.

Chaining and Concatenation

In the recomposition translator; when an

operand is not an intermediate temporary, it is

developed as an element in the output string

and placed in an empty word in a pool. It is

treated as a one-element string and assigned a

Mixed 1'kde

Figure 2.10a. Example of Decomposition-Part I.

control word. When strings are to be joined

together, the last word of the first string refers to

the linking operator (which is developed in the

empty pool), and in turn, the operator refers to

the first word of the next or preceding string.

The two or more control words are combined

into one which references the first and last

words of the concatenated chain or string of

elements. When the recomposition translator

eventually encounters the EOM op­ erator, there

is only one chain represented by a control word

on the string list. This chain or scrambled

string is then unraveled into a sequential list of

all the elements in the re­ composed statement

or expression.

Diagnostics

ii.

iii.

iv.

vi.

vii.

viii.

ix.

xi.

* xii.

* xiii ..

xiv.

xv.

xvi.

xvii.

xviii.

xix.

Mixed fvlode in a Function Argument

Illegal Use of Function or Array Name Without Arguments

Simple Variable, Constant, or Expression followed by left Parentheses

Illegal fvlode of Function Argument

Illegal Number of Arguments in Function

Fixed to Float Exponent

Level of Nesting of Functions Exceeds Maximum Number of Eight (B)

Illegal Successive Operators

Illegal Parenthetical Order

Uneven Number of Parentheses

General Syntax Error

Expression Begins with Illegal Operator

fvlode of Variable Not Set

1','ode Not Set For Arry Arguments in Function

Number of Parameters in Function Exceeds Declared Maximum

Number of Arguments in (Defined) Function Specified lo be Zera

1','ode of Actual Argument is Not Set

Illegal Operator in Parameter or Illegal Position for Comma

A0 B**C condition - (illegal in FORTRAN)

The decomposition performs complete diag­

nostic checking. Wherever possible, error
checking continues even though some errors

l
X = ((-B) + SQRTF(B••2-4. *A*C))/(2. •A)0

MACRO OUTPUT STRING PUSH DOWN LISTS

OP Vl V2 .2.!:. Var •

um X

temp

4. A + SQRTF

,.¥

fo 7
temp

/.
/

.. Only these errors cause an immediate error return.

All others return for further error checki':!S.· • •

Figure 2.9. Arithmetic Translator Diagnostics.

/ temp

C

Figure 2.10b. Example of Decomposition-Part II.

/

y<

440 PROCEEDINGS-SPRING JOINT- COMPUTER CONFERENCE, 1964

l
X = {(-B) + SQ R TF{B0 2- 4. *A*C))/(2. *A)0

 MACRO OUTPUT STRING PUSH DOWN LISTS

X

rr

ym(

temp

Figure 2.10c. Example of Decomposition-Part III.

have already been encountered. (See Figure

last operator on the operator list, action is
taken to output a two- or three-byte macro :

a. The last operator on the operator list

and the last one or two variables on the

variable list, depending on the opera­

tor, are removed and incorporated into

an output macro.

b. For each macro generated for the out­
put string, except for comma-operator

macros, a temporary indication is gen­
erated on the variable list.

X = ((-8) + SQRTF(8"'"2-.(. •A•C))/(2. •A) 0

MACRO INPUT STRING PUSH DOWN LISTS

OP .Y!.. \/2 OP Wori< String

um um,,¥ -8

2.9 for a list of decomposition diagnostics.)

-·
... 2 **7 8..,.2

A ·/

Decomposition Rules (Figure 2.10)

1. When all action has been taken with a new
operator or variable encountered in the

forward scan it is placed on the appropri­
ate push-down list.

2. An array name or function name followed

by a left parenthesis generates two addi­

tional operators for the operator list: a

subscript operator or function operator,

and a comma operator for the, initial pa­
rameter.

3. When the forcing value of a new operator

equals or exceeds the forcing value of the

X = ((-8) + SQRTF(8.. 2-.(. •A•C))/2, •A)0

temp C /
temp temp /.
temp C

fo SQRTF .(.•A

temp temp

2. A

I temp tanp

X temp

0 temp

Current

N-Op

Figure 2.11a. Example of Recomposition-Part I.

Recomposition Rules (Figure 2.11)

1. On each new macro encountered in the for­

ward scan, the right operand (V2), if it
MACRO OUTPUT STRING PUSH DOWN LISTS

OP Vl ::E_ .Q!. Var.
exists, is always considered for action be­
fore the left operand (VI).

um / /

,;,4'_

t/P

a. If Vi of a macro is not a temporary
indication, it is developed in a word

from the empty pool, and assigned to a

control word which is placed on the

intermediate work list.

b. If V1 of a macro is a temporary indica­
tion, the last control word on the string
list is removed and placed on the work
list.

2. For any operator in a macro except the

Figure 2.10.d. Example of Decomposition-Part IV. comma operator 1 the last action taken is to

/

l

.YI_ Yl:...
um

4.

temp

2

A

C

/

/
y

 temp temp ,,,¾
 temp

fo SQRTF

+ temp temp /

 ...
2

A

/
/

temp

temp

C

temp

/ /

temp

fo SQRTF

+ temp temp

 2. A

I temp temp

 X tem19

0 temp

temp C --- ---

REMOTE COMPUTING-AN EXPERIMENTAL SYSTEM 441

X 2 ((-8) + SQRTF(8**2-4. •A•C))/(2. *A)0

X = ((-8) + SQRTF(**2-4. •A•C))/(2. *A) 0

MACRO INPUT STRING PUSH DOWN LISTS

OP Vl V2 OP Work

um um _.-€--" -8

...J,.?I<

 MACRO INPUT STRING

OP Vl

B

4. A

temp C

temp temp

temp

fo SQRTF

PUSH DOWN LISTS

OP Work String

:;:..- (-B •A)

(- .•A)

4. A

temp temp

temp 8**2-4. *A*C

-fo SQRTF SQRTF

+ temp temp

2. A

I temp temp

X temp

temp

Figure 2.llb. Example of Recomposition-Part II.

place the operator temporarily on the op­

erator push-down list, and to combine the

control words on the work list, linking
tl-u ;-,. C!t-r;nn-C! tnn-at-ha-r in+n nn.n nnn+-.-,-,.1
IJ.&..&"".L.L t.:l'"".L.&..&..LE,lr.:JI I.IVE,'-'11.1.1..1.¥..L .1..1..1.\IV V.1..1.\:.: '-'V.1..1. J.V.J.

word, which is placed on the string list.

a. For subscript and function operators,

the name and parameter strings refer­

enced on the push-down work list are

linked in order, separated by appropri­

ate parentheses and commas.

X = ((-B) + SQRT F(B0 * 2-4. *A*C))/(2. •A)0

+ temp temp

2. A

I temp temp

X temp

-0 temp·

X= (-8+ SQRTF(B**2--4.*A*C))/(2.*A)

Current

New Op

0

Figure 2.lld. Example of Recomposition-Part IV.

b. For arithmetic unary or binary opera­

tors, the one or two strings refe"renced

on the work list are linked with the

operator.

3. Whenever a control word is removed from

the string list, an operator is removed

from the operator list and tested against

the new operator from the current macro.

a. When the right forcing-value of the

new operator equals or exceeds the left

forcing-:value of this last operator from
the operator list, parentheses are placed

at the ends of the string referenced

by the control word just placed on the

work list.
 MACRO INPUT STRING

OP Y!._.

urn B

2

PUSH DOWN LISTS

OP Work

---.-,,-..--- _sQRrr

b. If the string represents V2, and the left

forcing-values of the new and last op­

erators are equivalent, parentheses are
4. A - •A•C) placed at the ends of the string.
temp C

temp temp

temp

fo SQRTF

+ temp temp

2. A

Current

New OP

I

------ -a----
--1<"

--r.-'

(2.*A)

(-B + SQRTF(B**2-4*A*C))

Extensions

There is no limit to the length of the state­

ment string that can be used as input to this

type of decomposition translator.

Any mathematical language based on hier­

archical rules of operation-for purposes of

computation similar to that in arithmetic

formulas-can be decomposed and recomposed

just as easily using forcing tables and the other

Figure 2.llc. Example of Recomposition-Part III. traditional techniques. The macro form pro-

-1 temp temp

0

X

temp

temp

file:///C:/3/iX

442 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

duced could be of quite a different form de­

pending upon the nature of the interpretive

scan. It would, of course, have the same implied

order of operation. The operators involved

need not be only unary or binary operators;

they need not be only arithemtical or functional.

Boolean operators, logical operators, ternary

operators, or any others could be easily handled

in this manner.

REFERENCES

1. A. NEWELL (Ed.), "Information Process­
ing Language-V Manual," Prentice-Hall,
1961.

2. H. GERLERNTER, J. HANSEN, and C. GER­
BERICH, "A FORTRAN-Compiled List­

Processing Language," ACM Journal,
April 1960.

3. A. J. PERLIS and C. THORNTON, "Symbol

Manipulation by Threaded Lists," ACM
Communications, April 1960.

4. A. EVANS, A. PERLIS, and H. VAN ZOEREN,
"The Use of Threaded Lists in Construct­
ing a Combined ALGOL and Machine-Like

Assembly Processor," ACM Communica­
tions, January 1961.

5. J. WEIZENBAUM, "Knotted List Struc­

tures," ACM Communications, March 1962.

6. J. WEIZENBAUM, "Symmetric List Proces­

sor," ACM Communicat ons, September
1963.

7. R. BROOKER and D. MORRIS, "A General

Translation Program for Phrase Structure

Languages (Lists)," ACM Journal, Janu­
ary 1962.

8. H. W. LAWSON, "The Use of Chain List
Matrices for the Analysis of COBOL Data

Structures," Proc. ACM National Conter­
ence, September 1962.

9. H. D. BAECKER, "Mapped List Structures,"

ACM Communications, August 1963.

10. P. R. KOSINSKI, H. KANNER, and C. L.
ROBINSON, "A Tree-Structured Symbol

Table for an ALGOL Compiler," Proc. of
ACM National Conference, August 1963.

11. P. M. SHERMAN, "Table Look-at Tech­

niques," ACM Communications, April 1961.

12. L. R. TURNER, A. MANOS, and N. LANDIS,

Initial Experience on Multiprogramming

on the Lewis Research Center 1103 Com­

puter," Proc. of ACM National Conterence,
August 1960.

13. N. LANDIS, A. MANOS, and L. R. TURNER,

"Initial Experience with an Operating

Multiprogramming System," ACM <:;om­
munications, May 1962.

14. A. B. SHAFRITZ, A. E. MILLER, and K. ROSE,

"Multi-level Programming for a Real-Time

System," Proc. EJCC, December 1961.

15. E. F. CODD, "Multiprogram Scheduling,"

ACM Communications, June 1960, July

1960.

16. E. F. CODD, "Experience. with a Multipro­

gram Scheduling Algorithm," Proc. of
ACM National Conference, August 1960.

17. J. WEGSTEIN, "From Formulas to Com­

puter Oriented Language," ACM Com­
munications, March 1959.

18. B. ARDEN and R. GRAHAM, "On GAT and
the Construction of Translators," ACM
Communications, July 1959.

19. M. E. CONWAY, "Design of a Separable

Transition Diagram Compiler," ACM Com,­
munications, July 1963.

20. The 701 SP,_eedcoding System, IBM Form

Number 24-6059.

21. The 705 Print.System, IBM Form Number
32- 7855, 1957.

22. Bendix Intercom 1000 Programming Sys­

tem, Bendix Computer Division, 1958.

23. W. R. BRITTENHAM, et al., "SALE (Simple

Algebraic Language for Engineers),"

ACM Cornmunications, October 1959.

24. R. E. MACHOL, W. J. ECCLES, and J. C.
BAYS, "There's Still a Place for Interpret­

ers," Proc. ACM National Conference, Sep­
tember 1962.

25. W. LONGERAN and P. KING, "Design of the

Burroughs B5000 System," Datamation,
April 1961.

26. R. W. BARTON, "A New Approach to the

Function Design of a Digital Computer,"

Proc. W JGC, April 1961.

27. J. ANDERSON, "A Computer for Direct Exe­

cution of Algorithmic Languages," Proc.
EJCC, December 1961.

REMOTE COMPUTING-AN EXPERIMENTAL SYSTEM 443

28. A. C. D. HALEY, "The KDF. 9 Computer

System," Proc. FJGC, December 1962.

29. C. B. CARLSON, "The Mechanization of a

Push-Down Stack," Proc. FJCC, November

1963.

30. 7740 Communications Control System
Principles of Operation, IBM Form Num­

ber A22-6753.

31. 7740 Communications Control System

Communications Control Package, IBM

Form Number C28-8160.

32. J. J. ALLEN, D. P. MOORE, and H.P. ROGO­
WAY, "SHARE Internal FORTRAN Trans­

lator (SIFT)," Datamation, March 1963.

33. K. SAMUELSON and F. L. BAUER, "Sequen­

tial Formula Translation," ACM Commu­
nications, February 1960.

34. H. D. BA;ECKER, "Implementing a Stack,"

ACM Communications, October 1962.

35. C. L. HAMBLIN, "Translation to and from

Polish Notation," The Computer Journal,
October 1962.

36. R. J. EVEY, "Application of Pushdown­

Store Machines," Proc. FJGC, November
1963.

37. K. IVERSON, "A Programming Language"
(Chapter 5), John Wiley & Sons, Inc.,
1962.

